Intensive Care Nutrition

Dr Alan Race
BSc(Hons) PhD FRCA
Objectives

1. What examiners say
2. Definition
3. Assessment
4. Requirements
5. Types of delivery
6. CALORIES Trial
7. Timing
8. Immunomodulation
9. Refeeding
Enteral nutrition in critically ill. 44.9% pass rate.

- Answered poorly.
- Very important – detailed knowledge of the specific components
- Required knowledge:
 - Water (ml/kg/day)
 - Calories (kCal/kg/day)
 - Protein, fat and carbohydrate (g/day) Na/K (mmol/kg/day) and minerals
 - Vitamins
 - Immunonutrition
- Failed to be specific enough. No okay: “nutrition team” or “Intensive Care dietician”
Nutrition

• Key aspect of care but little evidence

• Important because
 • Increased energy requirements
 • Failure to meet energy needs
 • Catabolism – wound healing, immune function, coagulation, muscle strength and respiratory function
 • Hypoglycaemia
 • Loss of mean body mass
 • Hypoalbuminaemia

• Malnutrition may lead to worse outcomes

• Overfeeding dangerous too
Assessment

- Biochemical markers
 - albumin, pre-albumin, transferrin

- In critical illness they are acute phase markers

- The involvement of a critical care dietician is imperative in clinical practice
Assessment

• It is difficult to estimate nutritional requirements

• Energy
 • Indirect calorimetry
 • The gold standard
 • Calorific requirements calculated on the basis of oxygen consumption
 • Not really available on the majority of units
 • Measurement of CO₂ production
 • Good estimate of energy requirement under stable conditions; however, overfeeding will lead to an overestimate of energy expenditure
Assessment

• Estimation
 • For the majority of units, energy requirements are based upon population derived formulae +/- correction for disease state
 • **Scholfield Formula**
 • Age under 65 years: 25 kilocalories per day
 • Age over 65 years: 20 kilocalories per day
 • Some patient groups present particular problems in determining energy requirements
 • Obese
 • Malnurished
 • Patients with hypermetabolic states (major trauma, burns)
 • It was postulated that patients with ARDS may benefit from a lower calorific intake at the beginning of their admission; this however was not borne out in the recent EDEN study
<table>
<thead>
<tr>
<th>Gender</th>
<th>Equation</th>
<th>Descriptive equation for BMR (MJ/24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Henry(^{[10]})</td>
<td>BMR = 0.0669 \times \text{(Weight)} + 2.28</td>
</tr>
<tr>
<td></td>
<td>Schofield(^{[10,11]})</td>
<td>BMR = 0.063 \times \text{(Weight)} + 2.896</td>
</tr>
</tbody>
</table>
| | Cole\(^{[11]}\) | \[
BMR = \exp\left(-0.263 - 0.00277 \times \text{Age} + 0.4877 \ln \text{(Weight)} + 0.3367 \ln \text{(Height)} \right)
\] |
| Female | Henry\(^{[10]}\) | BMR = 0.0546 \times \text{(Weight)} + 2.33 |
| | Schofield\(^{[10,11]}\) | BMR = 0.062 \times \text{(Weight)} + 2.036 |
| | Cole\(^{[11]}\) | \[
BMR = \exp\left(-0.1934 - 0.00199 \times \text{Age} + 0.4764 \ln \text{(Weight)} + 0.0194 \ln \text{(Height)} \right)
\] |

W – Weight (kg); H – Height (cm); A – Age (years)
Daily requirements

<table>
<thead>
<tr>
<th></th>
<th>/ kg / day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Under 65 years – 25 kilocalories</td>
</tr>
<tr>
<td></td>
<td>Over 65 years – 20 kilocalories</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Should provide ~ 60% non-protein calories</td>
</tr>
<tr>
<td></td>
<td>3-4 g (4 calories / g)</td>
</tr>
<tr>
<td>Protein</td>
<td>Normally 1-1.5 g</td>
</tr>
<tr>
<td></td>
<td>Increase to 1.5 – 2.0 g for burns, major trauma and hypercatabolic states</td>
</tr>
<tr>
<td></td>
<td>A mixture of essential and non-essential amino acids</td>
</tr>
<tr>
<td></td>
<td>(4 calories / g)</td>
</tr>
<tr>
<td>Lipids</td>
<td>Should provide ~ 40% of non-protein</td>
</tr>
<tr>
<td></td>
<td>0.7 – 1.5 g (9 calories / g)</td>
</tr>
</tbody>
</table>
Daily requirements

<table>
<thead>
<tr>
<th></th>
<th>/ kg / day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>30 mls</td>
</tr>
</tbody>
</table>
| **Electrolytes** | Sodium 1-2 mmol
| | Potassium 0.7 – 1 mmol
| | Calcium 0.1 mmol
| | Magnesium 0.1 mmol
| | Phosphate 0.4 mmol |
| **Trace elements** | Role unclear
| | Selenium may have mortality benefit |
Route of nutrition

• Volitional intake preferred route

• Those unable to meet nutritional requirements will require enteral nutrition (ER) or parenteral nutrition (PN)
Enteral Nutrition

- Administered via enteral tube, which is gastric or jejunal
 - Jejunal tubes – expensive and difficult to site
 - Jejunal tubes may reduce VAPs – not borne out in trials
 - Jejunal tubes – where gastric tubes are not tolerated

<table>
<thead>
<tr>
<th>Advantages over PN</th>
<th>Disadvantages over PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheaper</td>
<td>Requires gut function</td>
</tr>
<tr>
<td>Easy administration</td>
<td>VAP association</td>
</tr>
<tr>
<td>Lower risk of infection</td>
<td>Less reliable delivery of energy</td>
</tr>
<tr>
<td>“Gut protection”</td>
<td></td>
</tr>
</tbody>
</table>
Enteral Nutrition

• Bowel sounds/flatus/stool – poor indicator of readiness for EN in ICU
• Volume aspirated from the feeding tube every 4 hours
 • Aspirates > 500 ml – hold feeds
 • High aspirates – look for gut failure (constipation, acute abdomen or ACS)
• Prokinetics
• Avoid opiates
• Jejunal feeding and PN are alternative options
Parenteral nutrition

• Enteral route is not available, or who fail to tolerate enteral feed

• Complications of PN include:
 • Access-related
 • Central venous line insertion
 • Liver-related
 • Hepatic steatosis
 • Cholestasis
 • Liver failure
 • Increased risk of sepsis with PN
 • Increased risk of hyperglycaemia
Enteral vs parenteral (CALORIES trial)

- Large pragmatic multi-centre trial – early PN vs EN,
 - No difference in mortality at 30 days
 - EN higher risk of vomiting and hypoglycaemia
- The authors concluded that
 - “Early nutritional support through parenteral route is neither more harmful nor more beneficial than such support through the enteral route”
- Neither group achieved energy targets in the trial and there was no significant difference in energy delivery in both groups: this challenges the idea that PN is more effective at delivering nutrition
Timing of nutrition

• Early vs Late
 • Timing of nutrition (either EN or PN)
 • ‘early’ or ‘late’.
 • No absolute consensus on timings
 • “Early” < 48 hrs after ICU admission
 • “Late” > 7 days
Timing of nutrition

- Evidence and practice
 - No high-grade evidence
 - Consensus: early EN - reduced mortality
 - Controversial: early PN in gut failure – good
 - CALORIES study
 - Cancer and pre-existing malnutrition – stronger evidence for early feeds
Immuno-nutrition

- Glutamine
 - Most abundant circulating AA
 - Leukocytes and enterocyte energy
 - Inflammation, oxidating stress, gut integrity and function
 - Trauma and burns
Immuno-nutrition

• L-Arginine
 • Essential during metabolic stress
 • Upregulates macrophage activity
 • High-doses – enhanced wound healing and reduce infections in elective surgery
 • Increases mortality in other groups
Omega 3

• Immuno-modulator
• Arachidonic acid inhibitor
• ?ARDS modulation
Refeeding Syndrome

• Develops when CHO load is delivered following prolonged starving
• Hypoinsulinaemia is common during fasting – the sudden increase in insulin leads to intracellular uptake:
 • K+
 • Mg++
 • PO4-
 • Ca++
• Arrhythmias and cardiac failure
Refeeding Syndrome

• Avoidance and management
 • Risk assess
 • THIAMINE replacement
 • Electrolyte replacement prior to feeding
 • EN withing 24-72 hrs
 • 10 kcal/kg initially
Hope we covered

1. What examiners say
2. Definition
3. Assessment
4. Requirements
5. Types of delivery
6. CALORIES Trial
7. Timing
8. Immunomodulation
9. Refeeding