ONE LUNG ANAESTHESIA

N R BURRI
a) What are the indications for ‘one lung ventilation’ (OLV)? (30%)
b) How can the risks associated with lung resection be quantified preoperatively? (30%)
c) How would you manage the development of hypoxaemia during OLV? (40%)
WHAT SURGERIES REQUIRE IT?

- Lung
- Oesophagaeal
- Mediastinal
- Spinal

INDICATIONS

- Absolute
- Relative
ABSOLUTE INDICATIONS

ISOLATION
1. INFECTION
2. HAEMORRHAGE

VENTILATION
1. BRONCHOPLEURAL FISTULA
2. TRACHEOBRONCHIAL TREE DISRUPTION
3. GIANT UNILATERAL LUNG CYST
4. SURGERY ON MAIN BRONCHI

LAVAGE
PULMONARY ALVEOLAR PROTEINOSIS
RELATIVE INDICATIONS

ACCESS

1. THORACIC AORTIC ANEURYSM
2. PNEUMONECTOMY
3. LOBECTOMY
4. OESOPHAGECTOMY

NON THORACIC

SPINE SURGERY
LUNG SURGERIES / CANCER

- Lobectomies: 2400/yr 2-4% mortality
- Pneumonectomies: 500/yr 6-8% mortality

3 PREREQUISITES FOR LUNG CANCER SURGERY:
1) Non small cell tumour (Squamous / Adeno).
2) Surgically resectable
3) Patient consent

BRONCHOSCOPY
CT
PET
MEDIASTINOSCOPY
TESTS OF PULMONARY FUNCTION

• Basic Spirometry
• Diffusion Capacity
• V/Q scan
• Prediction of Post Op Function
• Exercise Capability
• SpO₂ & ABGs

6 minute walk test
Shuttle walk test
CPET
BASIC SPIROMETRY:

- FEV₁
- FVC
- FEV₁ / FVC ratio
- Flow rates: Peak, mid, end expiratory
- RV

FEV₁ > 1.5L for Lobectomy & > 2L for Pneumonectomy
VITALOGRAPH: NORMAL

FEV₁ = 4.5
FVC = 5.5
FEV₁ % = 80%
AIRFLOW OBSTRUCTION

• DEFINED: $\text{FEV}_1 < 80\% ~ \& ~ \text{FEV}_1 / \text{FVC} < 0.7$

• SEVERITY OF COPD: (Based on $\downarrow \text{FEV}_1$)

 Ratio $< 0.7 \text{ FEV}_1 > 80\% \text{Stage 1}$
 50–80%: Mild......................... \text{Stage 2}
 30–49%: Moderate............... \text{Stage 3}
 $< 30\%$: Severe...................... \text{Stage 4}
NORMAL FLOW VOLUME LOOP

x-axis = volume in liters
y-axis = flow in liters/sec

ABC = inspiratory part of the loop (oval);
ACD = expiratory part of the loop (triangular);
ABCD = muscle dependent part of the loop;
DA = effort (muscle) independent part of the loop;
AC = vital capacity;
CD = peak expiratory flow (PEFR).
OBSTRUCTIVE & RESTRICTIVE PATTERNS:

OBSTRUCTIVE

RESTRICTIVE

SCOOPED OUT
VARIABLE OBSTRUCTION:

EXTRA THORACIC

INTRA THORACIC

VC PALSY, ET GOITRE

TUMOUR
DIFFUSION CAPACITY

• Amount of CO taken up by lung in unit time
• Expressed as DLCO: \(\text{mmol/kPa/mt} \)
• Alveolocapillary function
• Corrected for alv. Vol. = Transfer coefficient
• \(KCO = \text{mmol/kPa/mt/litre} \)
V/Q SCAN

• % Function of each lung
• **V**: Radioactive Xenon 133: Inhalation
• **Q**: Radiolabelled Technetium 99: IV
• **Uptake**: Gamma camera & Computer
PREDICTING POST OP LUNG FUNCTION

BASIC SPIROMETRY & FEV₁

Ex: FEV₁ is 1.6 Ltr & 80% predicted

RUL = 3 segments (Both lungs = 19)

ppo FEV₁ = 1.6 x 16/19 = 1.35 litres

80% x 16/19 = 67%

V/Q scan:

Pneumonectomy: Pre op FEV₁ x % RA non op lung

Lobectomy: Expected loss of function
EXERCISE CAPACITY

• 6 minute walk test
• Shuttle walk test
• CPET (Cardio Pulmonary Exercise Test)
RELEVANCE OF THE TESTS

• FEV$_1$ > 80%, > 2 L Pneumonectomy
• FEV$_1$ > 1.5 L Lobectomy
• Flights of stairs: 3 = > 1.7 FEV$_1$ and 5 = > 2L FEV$_1$

• DLCO < 60% increased mortality
• DLCO < 80% increased complications

• ppoFEV$_1$: 0.7 – 0.8 L advisable post lung resection
• Product of % ppoFEV$_1$ & %DLCO = 1650 !!!!!!

• VO$_2$ Max (ml/kg/mt)
 > 20 No risk (5 Flights of stairs)
 < 15 Increased risk
 < 10 40 – 50% mortality (< I Flight of stairs)
PRE OP EVALUATION
BEFORE LUNG RESECTION

Routine Lung Function Tests

FEV1 < 1.5 litre (Lobectomy)
< 2.0 litre (pneumonectomy)

Quantitative Lung Scan

% ppo FEV1 < 40%
% ppo TLCO < 40%

Exercise Testing

VO₂ max < 15ml kg⁻¹ min⁻¹

Consider other options

FEV1 > 1.5 litre suitable for lobectomy
FEV1 > 2.0 litre suitable for pneumonectomy

SURGERY

% ppo FEV1 > 40%
% ppo TLCO > 40%

VO₂ max > 15ml kg⁻¹ min⁻¹
PRE OPERATIVE EVALUATION
BEFORE LUNG RESECTON

- **ROUTINE PFT**
 - FEV$_1$ > 1.5 L: Lobectomy
 - FEV$_1$ > 2.0 L: Pneumonectomy

- **V/Q Scan**
 - ppo FEV$_1$ > 40%
 - ppo TLCO > 40%

- **CPET**
 - VO$_2$ max > 15ml/kg/mt

FIT FOR SURGERY
Guidelines on the Radical Management of Patients with Lung Cancer

British Thoracic Society and the Society for Cardiothoracic Surgery in Great Britain and Ireland
PHYSIOLOGY OF OLA
FACTORS TO CONSIDER

• Lateral Decubitus position
• Open chest
• Collapse of non dependent lung: Shunt
LATERAL DECUBITUS POSITION

• Gravity determined blood flow
• 60% flow to the dependent lung
• Preferential ventilation of Non dependent lung
• ↓ compliance and FRC of Dependent lung
• Elevated diaphragm

V/Q MISMATCH
OPEN CHEST

- ↑ compliance of Non dependent lung
- ↑ dead space
- ↑ shunt
- ↑ alveolar arterial oxygen gradient
COLLAPSE NON DEPENDENT LUNG

- Obligatory shunt due to non ventilation
- OLA = 50% shunt in theory

Shunt reduction:
- Gravity dependent blood flow
- 60% blood flow to dependent ventilated lung
- Regional HPV:
 - Onset: Seconds / Plateaus: 15mts / Max: 4 hrs
 - (Hypoxic Pulmonary vasoconstriction)
V/Q RELATIONSHIP

A. S/V

B. IPPV Both lungs.

C. IPPV One Lung
FACTORS AFFECTING HPV & PULMONARY BLOOD FLOW

- Inhaled agents: (< 1 MAC minimal)
- IV agents: No effect

- Vasodilators: Inhibit HPV
- Vasoconstrictors: Constriction in ventilated lung too

- FiO_2: Increase reduces shunt (Flow diversion)
- PEEP: Raises PVR / Increases shunt
CONDUCT OF OLA
AIMS

- ↓ airway irritability and reflexes
- Avoid inhibition of HPV
- Maintain haemodynamics

- GA with Controlled ventilation
- Agents with rapid offset
- TIVA
- GA with Thoracic Epidural Analgesia/PVB
MONITORING

• Routine
• CVP & IBP (same side)
• PV Loops
LUNG ISOLATION METHODS

- Double Lumen Tube
- Bronchial blocker (Arndt / Cohen)
- Single lumen endobronchial intubation
ROBERTSHAW & MALLINCKRODT
DLTs
ROBERTSHAW vs MALLINCKRODT

ROBERTSHAW

CONSTRUCTION
• Coated rubber Disposable
• Red rubber Reusable
• Blue bronchial limb & cuff

SIZES
• R & L
• ES, S, M & L

FEATURES
• Bite block @ T & B limb meet
• Longer slot in R bronchial cuff 21mm

CLINICAL USE
• Bulky, easy to use less likely to move
• Less easy to manipulate with FOS

MALLINCKRODT

CONSTRUCTION
• Disposable PVC & LPHV cuff design
• Blue bronchial limb & cuff
• Radio opaque markings

SIZES
• R & L
• 35 37 39 41 & 28 Left sided

FEATURES
• Variable depths of insertion
• Length markers on the side of the tube
• Small RUL ventilation

CLINICAL USE
• Not as stable as Robertshaw after insertion
• Malleable tubes useful for “railroading over FOS & Easier to use with FOS
• Standard scope over 35 F
Right DLT

- Tracheal limb
- Pilot balloon-tracheal cuff
- Tracheal ventilation lumen for left lung
- Bronchial limb
- Pilot balloon-bronchial cuff
- Bronchial curve
- Oropharyngeal curve
- Tracheal cuff
- Ventilation slot for upper right lobe
- Bronchial cuff
- Endobronchial ventilation lumen to middle and lower lobes
DLT-INSERTION DEPTH & SIZE

DEPTH OF INSERTION:
170cm tall: insertion depth: 29cm.
(For every +/- 10cm: +/- 1cm)

TRACHEAL WIDTH AND TUBE SIZE:
• 18mm = 41F
• 16mm = 39F
• 15mm = 37F
• 14mm = 35F
INSERTION OF LEFT DLT (BLIND)
INSERTION OF LEFT DLT (FOB GUIDED)
OPTIMAL POSITION - LEFT DLT
OPTIMAL POSITION - RIGHT DLT
DLT - MALPOSITIONS

• Too far out
• Too far in
• Opposite side insertion
HYPOXAEMLA DURING OLA

- Increase FiO$_2$ to 1.0
- Check DLT (Cuff Hernia / block / Kink)
- Check anaesthetic circuit & connections
- Check DLT position with FOS
- Ensure adequate cardiac output
HYPOXAEMIA DURING OLA

• Insufflate O_2 to non ventilated lung.
• Apply CPAP to non ventilated lung: 5-10cmH$_2$O.
• Apply PEEP to ventilated lung
• Intermittent insufflation of non ventilated lung
• Clamping appropriate PA to reduce shunt.
POST OPERATIVE CARE:

CESSATION OF OLA
• Suction before resuming 2 lung ventilation
• Inflate collapsed lung fully
• Perform Post Op CXR

COMPLICATIONS:
Sputum retention
Collapse Consolidation Oedema

PREVENTION:
Adequate pain relief: TEA / PVB
Ability to cough

HDU CARE
• Oxygen therapy
• Pain relief
• Physiotherapy
• Inhalation Therapy
• Chest drain & fluid balance.
a) What are the indications for ‘one lung ventilation’ (OLV)? (30%)
b) How can the risks associated with lung resection be quantified preoperatively? (30%)
c) How would you manage the development of hypoxaemia during OLV? (40%)